
Mimic: Speaking Style Disentanglement for Speech-Driven 3D Facial Animation

Supplementary Material

We strongly recommend watching the supplementary
video. We provide the full video and separately organized
videos, respectively.

Abstract

This supplemental document contains five aspects. Section
6 shows the detailed architecture of our Mimic. Section 7
presents more details of datasets and implementations. Sec-
tion 8 provides more experimental results and analysis. Sec-
tion 9 describes more details of our user study. Section 10
describes our supplemental videos. We also provide the code
to help readers better understand our implementation. The
source code and trained model will also be released upon pub-
lication.

6 Network Architecture Details
To improve the reproducibility of our method, we further
illustrate the detailed architectures of our Mimic in Table
5. Note that the parameters of the audio feature extractor
(TCN) and transformer encoder in our audio encoder are
initialized with the pre-trained wav2vec 2.0 weights 1. The
parameters of the audio feature extractor are fixed during
training.

7 More Details of Datasets and
Implementations

More Details of Datasets
We use 3D-HDTF, VOCASET (Cudeiro et al. 2019), and
BIWI (Fanelli et al. 2010) to evaluate our method quali-
tatively and quantitatively. The detailed descriptions of the
three datasets are as follows.

3D-HDTF We construct a large-scale dataset called 3D-
HDTF for speech-driven 3D facial animation, which is based
on a large in-the-wild high-resolution audio-visual dataset
HDTF (Zhang et al. 2021), consisting of about 362 differ-
ent videos for 15.8 hours, and the resolution of the origin
video is 720P or 1080P. To obtain 3D supervision, we gener-
ate pseudo ground truth 3D mesh data by integrating an off-
the-shelf monocular 3D face reconstruction method named
SPECTRE (Filntisis et al. 2022), which incorporates a per-
ceptual lip reading loss to guide the better reconstruction of
mouth movements.

1https://huggingface.co/facebook/wav2vec2-base-960h

SPECTRE predicts the shape, expression, and pose pa-
rameters of FLAME (Li et al. 2017), which is a parametric
3D head model. FLAME uses linear transformations to de-
scribe identity and expression-dependent shape variations,
as well as standard linear blend skinning (LBS) to model
neck, jaw, and eyeball rotations. It is defined as a function
M(β,θ,ψ) → (V,F) that given parameters for identity
shape β ∈ R|β|, expression ψ ∈ R|ψ|, and pose θ ∈ R|θ|,
ouputs a 3D mesh with vertices V ∈ Rnc×3 and triangles
F ∈ Rnf×3, where nc = 5023 and nf = 9976.

We employ SPECTRE trained on HDTF to obtain more
accurate FLAME parameters and get meshes by FLAME
forward pass. To align all frames in the “zero pose”, we
set the pose parameters describing neck rotations as zero.
To get a template mesh of a subject, we feed the shape pa-
rameters of the first frame of the subject, the zero-valued
expression parameters, and the zero-valued pose parameters
into the FLAME model. After filtering out some unavailable
samples, such as face detection failures, audio-visual mis-
alignment, etc., we obtain 220 mesh sequences of 160 iden-
tities with over 3k unique sentences and corresponding 160
template meshes. All sequences are processed at 25fps.

Compared with currently available 3D facial animation
datasets, such as VOCASET and BIWI, our 3D-HDTF con-
tains highly diversified subjects and corpus, holding exten-
sive speaking and rich speech content, which builds a more
informative facial motion space and better evaluates the ef-
fectiveness of our disentanglement method. Such a large-
scale dataset enables the training of high-fidelity, expres-
sive, and generalizable face animation models. Therefore,
we conduct extensive qualitative and quantitative experi-
ments on 3D-HDTF.

BIWI BIWI (Fanelli et al. 2010) is a 3D audio-visual cor-
pus of affective speech and corresponding dense dynamic
3D face geometries. It comprises two parts, one with emo-
tions and the other devoid of them, with 40 unique sentences
uttered by 14 subjects. In total, it consists of 1109 sequences
captured at 25 fps, 4.67 seconds long on average. All 3D face
geometries are registered with 23370 vertices. We follow the
data splits in recent works (Fan et al. 2022; Xing et al. 2023)
and use the emotional subset. Specifically, the training set
(BIWI-Train) contains 192 sentences, while the validation
set (BIWI-Val) contains 24 sentences. There are two testing



Module Input→Output Operation

Style Encoder M(T, V, 3)→M(T, V × 3) Reshape

M(T, V × 3)→ s(128) L(128)→ [C(3, 1, 1, 128)→ LN→ ReLU] ×5 → LN→ L(128)→ Drop→ PE→ Tenc(128, 256, 4, 4)→ L(128)→ MeanPool

Content Encoder M(T, V, 3)→M(T, V × 3) Reshape

M(T, V × 3)→ s(128) L(128)→ [C(3, 1, 1, 128)→ LN→ ReLU] ×5 → LN→ L(128)→ Drop→ PE→ Tenc(128, 256, 4, 4)→ L(128)

Audio Encoder X (L)→ a′(Ta, 512) C(10, 5, 0, 512)→ GN→ GeLU→ [C(3, 2, 0, 512)→ GN→ GeLU] ×7

a′(Ta, 512)→ a(T, 128) C(15, 2, 7, 512)→ LN→ L(768)→ Drop→ PE→ Tenc(768, 3072, 12, 12)→ L(128)

Motion Decoder
M̂past(T, V × 3)→ mpast(T, 128) L(128)

mpast(T, 128)→ m(T, 128) PPE→ [MSA(128, 4)→ SALN(s)→ MCA(128, 4, a|c)→ SALN(s)→ FF(128, 256)→ SALN(s)] ×1

m(T, 128)→ M̂(T, V × 3) L(V × 3)

Table 5: Illustration of detailed architectures. We set the da, dc, and da in the main paper as 128. C(k, s, p, n) denotes a 1D con-
volutional layer with kernel size k, stride size s, padding size p, and output channels of n. Tenc(d1, d2, h, l) denotes a transformer
encoder layer with basic channels of d1, forward channels of d2, self-attention head number of h, and layers of l. L(n) denotes a
linear layer with ouput channels of n. Drop denotes the dropout operation. PE and PPE denote the positional encoding (Vaswani
et al. 2017) and periodic positional encoding (Fan et al. 2022) operation. MeanPool denotes a mean pooling along the temporal
axis. MSA(d, h) denotes a multi-head self-attention with basic channels of d and head number of h. MCA(d, h, f) denotes a
multi-head cross-attention with basic channels of d, head number of h and input features f. SALN(s) denotes style-adaptive
layer normalization with input style code s. FF(d1, d2) denotes a feed forward layer with basic channels of d1 and forward
channels of d2. V = 5023 for 3D-HDTF and VOCASET, and V = 23370 for BIWI. We set T = 150 (6s) for 3D-HDTF and a
T that needs to be determined by the length of the sampled input sequence for both VOCASET and BIWI.

sets, in which BIWI-Test-A includes 24 sentences spoken by
six seen subjects, and BIWI-Test-B contains 32 sentences
spoken by eight unseen subjects. In our study, we use the
BIWI-Test-B for qualitative evaluation.

VOCASET VOCASET consists of 480 paired audio-
visual sequences recorded from 12 subjects, which are cap-
tured at 60 fps, and each sequence is about 4 seconds long.
It contains 255 unique sentences, some of which are shared
across speakers. Each 3D face mesh is registered to the
FLAME topology with 5023 vertices. We adopt the same
training (VOCA-Train), validation (VOCA-Val), and testing
(VOCA-Test) splits as recent works (Fan et al. 2022; Xing
et al. 2023) for fair comparisons.

Implementations of Baseline Methods

As mentioned in the main paper, we compare our method
with five state-of-the-art methods, VOCA (Cudeiro et al.
2019), MeshTalk (Richard et al. 2021), FaceFormer (Fan
et al. 2022), CodeTalker (Xing et al. 2023), and Imitator
(Thambiraja et al. 2022). For VOCA, we use the official
code2 to train and test on 3D-HDTF and BIWI, and test
the released model on VOCASET. For MeshTalk, we train
and test it using the official code3 on the three datasets. For
FaceFormer4 and CodeTalker5, we use the official code to
train and test on 3D-HDTF and test the released model on
both VOCASET and BIWI. For Imitator, we implement it
to the best of our understanding. We train Imitator on the
three datasets and perform the two-stage adaptation with a
10-second style reference video of each target subject.

2https://github.com/TimoBolkart/voca
3https://github.com/facebookresearch/meshtalk
4https://github.com/EvelynFan/FaceFormer
5https://github.com/Doubiiu/CodeTalker

8 More Experimental Results and Analysis
More Results and Analysis of Constraints
As described in the main paper, our method achieves the best
performance with all four constraints, demonstrating facili-
tation for disentangled representation learning by our con-
straints. We further investigate the impact of the auxiliary
style classifier Cs, auxiliary inverse classifier Cc, and con-
tent contrastive loss Lcon on two latent spaces. We conduct
ablation studies on 3D-HDTF-Test-B and visualize the latent
spaces of ablation results in Figure 7. Comparing Figure 7
(b) with (a), we observe that incorporating an auxiliary style
classifier brings the style codes of the same subject closer to
a common clustering center while pulling away style codes
from different subjects, contributing to the construction of
identity-related style space. Moving to Figure 7 (c), we no-
ticed that the content codes of the same subject tend to be
distributed in neighboring regions, suggesting that they ex-
hibit similar identity-related information. From (c) to (d) in
Figure 7, the introduced auxiliary inverse classifier helps al-
leviate the clustering effect among content codes, leading to
a more dispersed distribution. Furthermore, with the content
contrastive loss, the distributions of content codes and audio
features are pulled closer together, resulting in the content
space containing more semantic content information, which
further reduces the clustering of the content codes, as shown
in Figure 7 (e). With both the auxiliary inverse classifier and
content contrastive loss, the content space contains minimal
identity-related information, thus minimizing overlap with
the style space, ultimately enabling effective disentangle-
ment of speaking style and semantic content.

Impact of SALN
We introduce the style-adaptive layer normalization (SALN)
(Min et al. 2021) to incorporate the style code into our de-
coder. To verify the effectiveness of SALN, we compare it
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Figure 7: Impact of Cs on style space (a, b), and impact
of Cc and Lcon on content space (c, d, e). Different colors
indicate the latent codes of different subjects.

Method FVE ↓
( ×10−6 mm)

LVE ↓
( ×10−5 mm)

LDTW ↓
( ×10−4)

LDD ↓
( ×10−5 mm) SCS ↑

Ours (SALN) 0.551 3.20 6.82 0.89 0.995
Ours (add) 0.557 3.49 6.88 0.91 0.992
Ours (cat) 0.559 3.54 6.94 0.92 0.990

Table 6: Impact of SALN on 3D-HDTF-Test-A.

with the operations commonly used in recent works, such as
adding (Fan et al. 2022; Xing et al. 2023) and concatenating
(Cudeiro et al. 2019; Thambiraja et al. 2022). We test our
framework trained with these operations on 3D-HDTF-Test-
A and show results in Table 6. It can be seen that our frame-
work with SALN achieves the best performance among all
metrics, demonstrating the superiority of SALN. It may be
due to the fact that simple operations like adding or con-
catenating can hardly inject the rich style information within
style code into the decoding process.

Impact of Style Reference Sequence Length
To explore the impact of style reference sequence length,
we conduct an experiment on 3D-HDTF-Test-B. We sam-
ple sequences of different lengths (1-10s) as our style refer-
ence sequences, respectively, and calculate the style-related
metrics (LDD and SCS) for the inference results. As shown
in Figure 8, we observed that the performance increases as
the sequence length becomes longer, up until the sequence
length reaches approximately 6 seconds. This may be due
to the fact that the sequence length we used for training is
6s. Despite a slight decrease in performance when reduc-
ing the sequence length, our model still outperforms Imitator
(Thambiraja et al. 2022), which uses a 10-second sequence
length for style adaptation.

Video-driven 3D Facial Animation
Benefiting from our style-content disentanglement, we can
also achieve video-driven 3D facial animation, which re-
quires a driving video clip and a short style reference se-
quence as inputs. The input driving video can provide se-

Figure 8: Impact of the style reference sequence length.

mantic content information just like the driving speech. We
provide demos of 3D-HDTF in our supplemental videos.

9 More Details of User Study
As mentioned in the main paper, we collect 300 entries each
on 3D-HDTF-Test-A, VOCA-Test, and BIWI-Test-B, and
450 entries on 3D-HDTF-Test-B. In total, we obtain 1350
entries. In this study, 30 participants with good vision and
hearing ability complete the evaluation successfully. We en-
sure that the entries of each dataset were equally distributed
to each participant. As a result, the user study interface
shows 45 video pairs for each participant. For evaluating the
perceptual lip sync and realism, the participant is instructed
to judge the videos twice with the following two questions,
respectively: “Comparing the lips of two faces, which one is
more in sync with the audio?” and “Comparing the two full
faces, which one looks more realistic?”, as shown in Figure
9. For evaluating the speaking style, the participant is in-
structed to judge the videos with the question: “Comparing
the speaking style (including the amplitude of mouth open-
ing and closing, the dimensionality of pouting, etc.) of the
last two faces, which one is more consistent with the first
video?”, as shown in Figure 10. To avoid any selection bias,
the order of all methods for comparison is random for each
pair. We filter out those comparison results completed in less
than two minutes to remove the impact of random selection.

10 Video Comparsion
To better evaluate the qualitative results produced by com-
petitors (VOCA (Cudeiro et al. 2019), MeshTalk (Richard
et al. 2021), FaceFormer (Fan et al. 2022), CodeTalker (Xing
et al. 2023), and Imitator (Thambiraja et al. 2022)) and our
Mimic, we provide a supplemental video for demonstration
and comparison. The supplemental video contains the fol-
lowing results:

• Qualitative test results on 3D-HDTF-Test-B
• Qualitative test results on VOCA-Test
• Qualitative test results on BIWI-Test-B



• Comparison to SOTA methods on 3D-HDTF-Test-A
• Comparison to Imitator on 3D-HDTF-Test-B
• Comparison to SOTA methods on VOCA-Test
• Comparison to SOTA methods on BIWI-Test-B
• Comparison to previous methods on the speech from sup-

plementary videos of previous methods
• Qualitative test results of speaking style interpolation
• Qualitative test results of video-driven facial animation
• Qualitative test results of different languages (German)
• Qualitative test results of different languages (Korean)

Separately organized videos are also provided for ease of
watching.
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Figure 9: User study interface for evaluating the perceptual lip sync and realism.

Figure 10: User study interface for evaluating the speaking style.
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